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A generalization of the real-space Green’s-function approach is presented for ab initio calculations of
relativistic electron energy loss spectra �EELS� which are particularly important in anisotropic materials. The
approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In
particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS
experiments. The approach is validated by a study of the graphite C K edge, for which we present an accurate
magic angle measurement consistent with the predicted value.
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I. INTRODUCTION

Electron energy loss spectroscopy �EELS� measures the
energy loss of a beam of high-energy electrons, typically of
order 100 keV, propagated through a sample, e.g., in an elec-
tron microscope.1 The energy loss spectrum is defined as the
fraction of electrons that have lost a given amount of energy
by interacting inelastically with the sample. From the EELS
spectrum, one can obtain structural, chemical, and electronic
information analogous to that in x-ray absorption spectros-
copy �XAS�. The XAS spectrum encompasses both extended
x-ray absorption fine structure about 50 eV above an absorp-
tion edge and x-ray absorption near-edge structure below
that. We focus here on the ELNES �energy loss near-edge
structure� edges in the EELS, corresponding to inelastic
losses through the excitation of an electron from a deep core
level into unoccupied states. Because EELS is an absorption
technique and the initial core-level states are sharply defined
in energy, such core loss signals reflect the electronic struc-
ture of unoccupied electron states. In particular, apart from a
smoothly varying background cross-section factor, the shape
of the ionization edge is roughly an image of the unoccupied
and local angular momentum projected density of electron
states �lDOS�. Due to approximate dipole-selection rules, the
observed spectrum corresponds to a decomposition of the
DOS according into various angular momentum l channels.
Moreover, the possibility of tilting the specimen with respect
to the electron beam at fixed scattering angle allows one to
investigate the anisotropy in the local unoccupied DOS �Ref.
2� because the momentum transfer or scattering wave vector
q appears in the transition matrix element. Here q=k−k�,
where k is the wave vector of the incident fast electron and
k� the wave vector of the scattered fast electron �correspond-
ing to energies E and E� differing by the energy loss�. This is
the analog of the linear dichroism, which has been observed
in XAS. One distinguishing difference between EELS and
XAS or similar techniques is that in EELS, one can obtain
local atomic scale information by focusing a very small
probe of width�0.1 nm on a sample in a transmission elec-
tron microscope �TEM�. This is relevant for studies of nano-
scale materials. Modern instruments with field emitters also
allow detection of ELNES with an energy resolution of 0.6–
0.7 eV on a subnanometer scale and monochromated TEM

now can reach 0.1 eV resolution.3 However, as we discuss
below another important difference between EELS and XAS
is due to relativistic corrections.

As for XAS, ab initio calculations are often used to sup-
port the interpretation of experimental EELS data. Several
approaches exist. One often used approach is based on the
independent electron approximation using density-functional
theory �DFT� and supercell techniques to treat the core hole,
e.g., with the linear augmented plane wave �LAPW� band-
structure code WIEN2K.4,5 An alternative is the real-space
Green’s-function �RSGF� code FEFF,6 which does not rely on
any assumed periodicity and is applicable to periodic and
aperiodic materials alike. In contrast to the DFT-supercell
approach, FEFF is based on a real-space, quasiparticle ap-
proximation which includes inelastic losses, a screened core
hole, and vibrational damping. FEFF was originally designed
for XAS but heretofore has been used without modification
in EELS studies. However, those calculations implicitly as-
sume an approximate equivalence between dipole-selected
EELS �i.e., the long-wavelength limit� and XAS. A review of
the application of the FEFF code to EELS calculations is
given by Moreno et al.7

Although the equivalence between XAS and EELS is of-
ten taken for granted, the equivalence is not strictly valid.
Recently, for example, it has been recognized8 that in aniso-
tropic materials, a relativistic interaction Hamiltonian is es-
sential for accurate calculations of the scattering cross sec-
tion at relativistic beam energies. The dominant effect is a
relativistic contraction of the interaction field, which is con-
sequently anisotropic in the dipole limit. The treatment of
this relativistic effect requires a generalization of the FEFF

code to account for the anisotropy of the momentum-transfer
dependence. This generalization is carried out here and has
been implemented in the latest version FEFF9. Note that the
dipole-selection rule is an approximation that is generally
valid near q=0.1 This is generally a good approximation for
EELS; indeed, for the calculations presented in this paper,
nondipole transitions are negligible.

The main purpose of this paper is the development of an
ab initio EELS theory and code that is �i� based on a real-
space Green’s-function approach and �ii� that includes the
dominant relativistic effects. This is in contrast to previous
work where XAS calculations from FEFF were simply res-
caled to fit EELS data. We also discuss the importance of
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instrumental effects �e.g., characteristics of the electron mi-
croscope� which are needed to obtain quantitative agreement
with modern EELS experiments. The resulting FEFF-based
EELS code is broadly applicable and provides a novel, gen-
eral purpose theoretical tool for EELS calculations, which is
complementary to conventional band-structure techniques
and applicable over a broad spectral range.

As an illustrative application, we apply the method to
calculate the magic angle �m in EELS. The magic angle is
generally of interest only for anisotropic systems and small
collection angles. However, this special angle has a notable
relativistic dependence and has been a key issue in the recent
developments of relativistic effects in EELS.8 The angle is
defined as the value of the detector aperture of an electron
microscope for which the measured EELS spectrum is inde-
pendent of the relative orientation of sample and electron
beam. Measurements at the magic angle greatly simplify po-
larized EELS experiments, where the anisotropy of the signal
can be an unwelcome complication. Notably the magic angle
is material independent, and therefore provides a direct test
of the validity of the relativistic theory, unobfuscated by
many sources of discrepancy between spectra measured and
calculated. Indeed, the recent work that for the first time
succeeded in calculating the correct magic angle9 has estab-
lished this angle as a discriminating test that all valid EELS
theories and calculations should pass successfully. That is
precisely what we aim to do in this paper with the RSGF
approach in FEFF. In particular, we present a precise experi-
mental measurement of the magic angle for the C K edge of
graphite, which is compared to FEFF EELS calculations. We
show that calculations based on the relativistic generalization
of EELS in the FEFF code are more accurate and significantly
improve on earlier, nonrelativistic calculations. Although our
treatment does not take into account dielectric effects on the
magic angle, these effects are negligible for core-level EELS,
though they may be important for very low-energy edges.10

II. RELATIVISTIC ELECTRON ENERGY LOSS
SPECTRA

A. Transition tensor formalism

In this section, we develop a theory of relativistic EELS,
in terms of a transition tensor �TT� within the dipole approxi-
mation. The EELS signal is conventionally described in
terms of the double-differential scattering cross section
�DDCS�

�2��q,E�
�� � E

, �1�

which is the probability of detecting an electron that has lost
energy E and transferred momentum q by scattering into the
solid-angle d�. Formally the DDCS can be expressed in
terms of the bare Thomson cross section and the relativistic
dynamic form factor �DFF� S�q ,E�, as in Eq. �2� below.
Since the Thomson cross section is sharply peaked at small
q, it is common practice, and generally a good approxima-
tion, to consider only the “dipole transitions” �i.e., small q
limit�, where the orbital momentum quantum number l of the

atomic electron changes by �1 in transitions. Recently it has
been shown8,10 that in the dipole approximation the relativ-
istic DDSCS for EELS is related to the dynamic form factor
S�q� ,E� by the relation

�2��q,E�
�� � E

= � ��

��
�

Th

S�q�,E� , �2�

� ��

��
�

Th

=
4a0

−2�2

�q2 − �E/�c�2�2

k�

k
, �3�

S�q�,E� = �
i,f

	
i	q� · r	f�	2��Ef − Ei − E� . �4�

Here the momentum transfer in the dipole transition element
is relativistically contracted and denoted by q�,

q� = q − �2qzêz, �5�

where �=v /c and v is the beam velocity. This equation is
very similar to the description of XAS in the dipole limit,
where the impulse transfer q plays the role of the polariza-
tion vector �̂ in x-ray scattering matrix elements. However,
for relativistic EELS there is an extra q-dependent contribu-
tion along the direction of propagation êz.

In general, the DDCS can always be separated into a
probe-dependent part containing the q dependence and a
sample-dependent part that is independent of q. Since the
theory is bilinear in q, the sample-dependent term transforms
as a tensor, i.e.,

S�q�,E� = �
i,j=1

3

qi�qj��ij�E� , �6�

�ij�E� = �
i,f


i	xi	f�
f 	xj	i���E − Ei + Ef� . �7�

Here the TT �ij �E� allows one to describe all angular varia-
tions in the dynamic form factor of a sample once and for all,
independent of the electron-beam energy. Experimental con-
ditions determine which impulse transfers occur and there-
fore the weight of each component of the transition tensor
that contributes to the total cross section. This can be illus-
trated by considering the sample to beam orientation of an
EELS experiment. Rotation of the sample is equivalent to a
rotation of q, thus changing the weights of the �ij compo-
nents in Eq. �6�. The relativistic character of the formalism is
also obvious: the field of the beam electron contracts in its
propagation direction, resulting in the evaluation of Eq. �6�
using a contracted impulse transfer vector, as in Eq. �5�,
which is denoted by a prime.

Formally, the TT is a real-symmetric tensor with at most
six independent components. As such, it can always be di-
agonalized. However, a priori knowledge of the diagonal
representation is only available in symmetric materials,
where the principal axes are implied the physical symmetry
of the crystal itself and hence one set of coordinates diago-
nalizes the tensor for all energies. In the general case of a
low-symmetry sample or in a situation where a nonsymmet-
ric coordinate system is desirable, the cross terms in Eq. �6�
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are important and cannot be neglected.11,12 We give an ex-
ample of this in Sec. III.

B. Implementation in relativistic EELS code

Here we discuss how the relativistic theory developed
above has been implemented in the FEFF9 code. An EELS
experiment usually involves an integration over the DDCS
defined in Eq. �2�. Typically, the probe has a certain angular
width, characterized by the convergence semiangle �, allow-
ing a set of incoming plane waves k. Similarly, the detector
integrates the signal over a certain range of outgoing beam
directions k�, characterized by the collection semiangle �.
Both are usually on the order of millirad. Assuming that the
incoming beam is monochromatic, the measured signal is
then given by

���E�
�E

= �
�;�

�2��q,E�
�� � E

d3q . �8�

To cast the orientation dependence of the EELS spectrum
into a more explicit form, we rewrite Eq. �8� using the TT,

���E�
�E

= �
i,j=1

3

�ij�E��
�;�

qi�qj�
4a0

−2�2

�q2 − �E/�c�2�2

k�

k
d3q . �9�

Since the TT depends only on the sample system, only inte-
grals over functions of q need to be calculated to obtain the
DDCS. These integrals are approximated by a sum over a
finite set of impulse transfer vectors q. Other experimental
parameters included in our calculations are the electron-
beam energy, the sample to beam orientation, and the posi-
tion of the EELS detector in the scattering plane. The FEFF9

formalism always includes core-hole broadening appropriate
for a given edge, as well as broadening due to final-state
self-energy effects. Additional broadening �e.g., to account
for experimental resolution� can also be applied.

Our calculations are incorporated as an extension to the
ab initio real-space multiple-scattering code FEFF9. The code
first calculates the TT, which differs from that in XAS only
in the dipole-matrix elements. Next, the code determines the
net cross section of Eq. �2� for a given q from the transition
tensor and carries out the integrals over q as described
above. Thus the probe and the sample are treated separately;
that is, it is sufficient to calculate the properties of the
sample—which are all contained in the TT—only once for
the simulation of many experimental situations. All other
features of FEFF9 for treating excited states can also be used
in EELS calculations. These include the complex GW self-
energy to treat inelastic losses, the time-dependent local-
density approximation formalism to treat local-field effects
that correct the independent electron approximation in the
calculations,13 and Debye-Waller factors to account for dis-
order and temperature dependent �vibrational� effects.

III. APPLICATION: C K EDGE OF GRAPHITE

The strongly anisotropic nature of graphite makes its
EELS spectra strongly susceptible to orientational effects

and hence to relativistic contributions to the cross section as
discussed in Sec. II. As an illustrative example, we therefore
demonstrate our method on the C K edge of graphite, which
has an energy threshold of 285 eV. The correspondence of
our theoretical spectrum to experimental spectra is on par
with other leading ab initio codes but in this paper, we limit
ourselves to comparing the calculated spectra to experiment.
Figure 1 clearly shows a significant difference between rela-
tivistic and nonrelativistic calculation, as a contraction of the
electromagnetic field of the beam electron along the direc-
tion of propagation reduces the component of the spectrum
corresponding to the so-called 	-state transitions, which
make up the first part of the spectrum below 290 eV energy
loss. As a consequence, the overall spectrum and particularly
the ratio of its 	 and � peaks change dramatically. The ex-
periment is seen to be much closer to the relativistic calcu-
lation than to the nonrelativistic calculation. There are re-
maining discrepancies, however, most notably the separation
between 	 and � peaks, which is overestimated by several
electron volts in our calculations. We believe that this is an
artifact of the muffin-tin approximation in FEFF9 and may be
remedied by inclusion of the full potential in future develop-
ments.

The importance of relativistic corrections depends on the
anisotropy of the sample. For isotropic materials, there is no
relativistic effect at all, as the relative weights of the compo-
nents of the spectrum become irrelevant when these compo-
nents are identical.

Before moving to the study of the magic angle, we briefly
discuss the components of the TT and show that calculation
of its diagonal components is not generally sufficient to cal-
culate the EELS spectrum.11 We work in a Cartesian repre-
sentation and label the components i , j of the TT as x ,y ,z.
We first consider the TT in a symmetrical coordinate system:

FIG. 1. �Color online� The C K edge of graphite, measured ex-
perimentally �solid black line� and calculated relativistically �green
triangles� and nonrelativistically �blue circles�. Beam at 300 keV
along the c axis of the crystal. The convergence angle is 0.2 mrad
and the collection angle is 0.68 mrad. Experiment is much closer to
the relativistic calculation. The 	 to � separation is overestimated
in the calculation by several electron volts due to the muffin-tin
approximation.
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its z axis is perpendicular to the graphene sheets of the
sample; x and y are in plane. In fully symmetric coordinates,
the �zz spectrum contains the so-called 	 transitions or out-
of-plane transitions. �xx and �yy are identical and contain the
so-called � transitions or in-plane transitions. All off-
diagonal components are zero, as can be explained by sym-
metry, i.e., equivalence of x and −x, y and −y, and z and −z.

We now rotate the y and z axes around the x axis by 35°
and calculate the TT again. �xx is unchanged but �yy and �zz
have mixed and are of mixed 	 and � characters. Addition-
ally, the decrease in symmetry allows y ,z cross terms to
exist. The x, −x symmetry has been preserved, suppressing
xz, zx, xy, and yx components.

Figure 2 shows the corresponding ELNES spectrum for
the C K edge of graphite. In symmetric coordinates, calcula-
tion of the diagonal components of � is sufficient. In the
rotated system, however, symmetry is broken and the off-
diagonal components �yz and zy in this example� clearly
make an important contribution.

As noted in the introduction, the magic angle is defined as
that value of the collection angle �m for which the EELS
spectrum is independent of sample to beam orientation,
given a certain convergence angle �. In the dipole approxi-
mation, one can show that such an angle exists,14 at which
the integrals in Eq. �9� lose their orientation dependence. The
magic angle depends only on beam energy and energy loss
but it is approximately constant over the near-edge region.
For deep core spectra its value is independent of the material
or details of scattering theory. Consequently the magic angle
has played a key role in recent developments of EELS
theory.8 Although many experiments are performed with ap-
ertures much larger than the magic angle, it can still be of

practical importance to experimentalists since it allows one
to eliminate the complications of orientation dependence.
Often this angle is expressed in units of the “characteristic
scattering angle” 
E, which is the width of the Lorentzian
function that approximates the DFF as a function of scatter-
ing angle


E =
E

E0

E0 + mec
2

E0 + 2mec
2 , �10�

where E0 is the beam energy, E is the energy loss, and me is
the electron rest mass.

We have performed accurate measurements of the magic
angle of graphite. Experimental EELS spectra were recorded
on a Jeol 3000F microscope with a GIF 2000 spectrometer.
Parallel illumination with convergence angle ��0.2 mrad
was used on a highly oriented pyrolitic graphite sample that
was oriented first in 001 zone axis condition and then tilted
30° away from zone axis condition. The microscope is oper-
ated in diffraction mode and the entrance aperture together
with the chosen camera length defines the collection angle. A
large set of collection angles was taken and selected C K
ELNES spectra are shown in Fig. 3. By definition of the
magic angle �m, the ELNES spectra should not change upon
tilting, which occurs experimentally at �m=0.68�9� mrad,
i.e., between a collection angle of 0.62 and 0.79 mrad and
close to 
E=0.59 mrad.

We now consider theoretical calculations of the magic
angle based on our approach, as implemented in FEFF9. We
calculate spectra at different sample to beam orientations,
which we characterize by a single tilt angle between the elec-
tron beam and the crystal c axis. This tilt corresponds to a
rotation of qi�qj� in Eq. �9�. We could investigate the rotation
invariance of differential cross section, but it is more conve-
nient to choose a more orientation sensitive function of the
spectrum, and study it as a function of collection angle at
fixed energy loss. At the magic angle, the partial i= j cross
sections of Eq. �9� are individually rotation invariant14 and

FIG. 2. �Color online� C K edge of graphite calculated relativ-
istically in a symmetric coordinate system �solid black line�. Also
shown are the diagonal terms �xx+�yy +�zz calculated in an asym-
metric coordinate system �see text� �blue circles� and the off-
diagonal terms �xy +¯ �green triangles�. In the symmetric coordi-
nate system, the diagonal terms equal the total spectrum and the
off-diagonal terms are zero. The total spectrum—sum of diagonal
and off-diagonal terms—is the same in both coordinate systems.
The beam is perpendicular to the graphene sheets; the beam energy
is 300 keV; �=0 mrad �parallel incident beam�; and �=10 mrad.

FIG. 3. C K edge of graphite measured at 300 keV beam energy
for two orientations and different collection angles. On the horizon-
tal axis is the energy loss �electron volt�, ranging from 250 to 450
eV. On the vertical axis, EELS spectra are normalized to 1. Note
that the two orientations overlap between a collection angle of 0.62
and 0.79 mrad. The convergence angle is at most 0.2 mrad.
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therefore, we may equivalently study the 	 /� ratio of the
spectrum. This function is important as it is related to the
sp2 /sp3 ratio which is often used to characterize carbon
samples.15 In symmetric coordinates, it is given by the 	
term or i= j=z term of Eq. �6�, divided by the � term or i
= j=x plus i= j=y terms, i.e.,


	

�
�ª

�zz

�xx + �yy
. �11�

We calculate this quantity at a fixed energy loss of E
=294 eV, as a function of collection angle � in a nonrela-
tivistic calculation �Fig. 4�a�� and in a relativistic calculation
�Fig. 4�b��. Three different sample to beam orientations are
shown in each figure. At the magic angle, the spectrum and
its 	 /� ratio are independent of orientation.

The nonrelativistic simulation shown in Fig. 4�a� gives
�m=4
E, a result which has been reported in the literature for
many years but is inconsistent with relativistic experiments.
A relativistic calculation is shown in Fig. 4�b�. We find the
magic angle �m=0.60 mrad at zero convergence angle and
�m=0.71 mrad at convergence angle �=0.2 mrad, the up-
per limit of the beam angular width used in the experiment.
This theoretical prediction of 0.60–0.73 mrad is in excellent
agreement with the experimental measurement of 0.62–0.79
mrad �Fig. 3�. These results also compare well with calcula-
tions using the WIEN2K code and with previous work by
Hebert.14

IV. CONCLUSIONS

We have presented a relativistic generalization of real-
space Green’s-function approach that is implemented in the

FEFF9 code for ab initio relativistic calculations of electron
energy loss spectra. This approach provides a useful alterna-
tive to conventional DFT-based k-space calculations of
EELS because it is applicable to periodic and aperiodic
structured, spans a broad spectral range, and incorporates key
many-body effects including core-hole lifetime, final-state
self-energy, Debye-Waller factors, and core-hole effects
without the need for a supercell. The calculations correctly
account for momentum-transfer q dependence and micro-
scope settings such as collection and convergence angle. In
contrast to previous FEFF calculations, where EELS spectra
were approximated by XAS calculations, the present code is
in quantitative agreement with modern EELS experiments
with relativistic beam energies. The approach has been tested
against recent measurements on the C K edge of graphite and
accurately predicts the observed measured magic angle.
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(b)(a)

FIG. 4. �Color online� Calculation of the sp2 ratio �see text� of the graphite C K edge at 10 eV above threshold for a 300 keV beam and
three sample to beam orientations: 0° �solid black line�, 45° �blue circles�, and 90° �green triangles�. The magic angle is at the intersection
of the three curves. The convergence angle is 0 mrad �parallel incident beam�. �a� Nonrelativistic calculation shown in left panel and �b�
relativistic calculation shown in right panel.
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